
INTO-CPS Maestro
Release 2.0.0 Alpha

Sep 24, 2020

Contents

1 User documentation 3
1.1 Getting Started . 3
1.2 API . 7

2 Developer Documentation 9

3 Indices and tables 11

i

ii

INTO-CPS Maestro, Release 2.0.0 Alpha

For details on how to use Maestro, please see User documentation.

For details on how to assist in developing Maestro, please see the Developer Documentation.

For additional information on the INTO-CPS tool chain, please see https://github.com/INTO-CPS-Association/
Documentation

Contents 1

https://github.com/INTO-CPS-Association/Documentation
https://github.com/INTO-CPS-Association/Documentation

INTO-CPS Maestro, Release 2.0.0 Alpha

2 Contents

CHAPTER 1

User documentation

Maestro is currently undergoing documentation updates. Currently, the user documentation consists of API documen-
tation.

1.1 Getting Started

This page presents a getting started guide using the command-line interface of Maestro.

Additional information is available at API.

1.1.1 0. Environment

Maestro is built with Java 11, but it is expected that Java 8 will work as well.

1.1.2 1. Downloads

Download the latest coe jar from releases: https://github.com/INTO-CPS-Association/maestro/releases/latest

We will be running a co-simulation of the MassSpringDamper case study, described in https://github.com/
INTO-CPS-Association/example-mass_spring_damper.

Download the two Mass Spring Damper FMUs exported from 20-sim: https://github.com/INTO-CPS-Association/
example-mass_spring_damper/tree/master/FMUs/20-Sim

Place both jar and FMUs in the same folder.

1.1.3 2. Describe FMU Connections

Create the following scenario.json file in the same folder as the jar file:

3

https://github.com/INTO-CPS-Association/maestro/releases/latest
https://github.com/INTO-CPS-Association/example-mass_spring_damper
https://github.com/INTO-CPS-Association/example-mass_spring_damper
https://github.com/INTO-CPS-Association/example-mass_spring_damper/tree/master/FMUs/20-Sim
https://github.com/INTO-CPS-Association/example-mass_spring_damper/tree/master/FMUs/20-Sim

INTO-CPS Maestro, Release 2.0.0 Alpha

1 {
2 "fmus":{
3 "{msd1}":"MassSpringDamper1.fmu",
4 "{msd2}":"MassSpringDamper2.fmu"
5 },
6 "connections":{
7 "{msd1}.msd1i.x1":[
8 "{msd2}.msd2i.x1"
9],

10 "{msd1}.msd1i.v1":[
11 "{msd2}.msd2i.v1"
12],
13 "{msd2}.msd2i.fk":[
14 "{msd1}.msd1i.fk"
15]
16 },
17 "logVariables":{
18 "{msd2}.msd2i":[
19 "x2",
20 "v2"
21]
22 },
23 "parameters":{
24 "{msd2}.msd2i.c2":1.0,
25 "{msd2}.msd2i.cc":1.0,
26 "{msd2}.msd2i.d2":1.0,
27 "{msd2}.msd2i.dc":1.0,
28 "{msd2}.msd2i.m2":1.0
29 },
30 "algorithm":{
31 "type":"fixed-step",
32 "size":0.001
33 },
34 "loggingOn":false,
35 "overrideLogLevel":"INFO"
36 }

1.1.4 4a. Running a Co-simulation using CLI

Open a terminal in the same folder and execute java -jar coe-1.0.10-jar-with-dependencies.jar
--configuration scenario.json --oneshot --starttime 0.0 --endtime 10.0

Afterwards an outputs.csv file is available with the co-simulation results.

1.1.5 4b. Running a Co-simulation with Master Web Interface for Co-Simulation

This requires a bit more than execting a co-simulation using the CLI.

For this reason, a Python scrpt will be used as reference and explained in bits. Full Python Script

4b.1 Launch the COE

Launch the COE with a single argument, which makes it start up as a web server on port 8082: java -jar coe-1.
0.10-jar-with-dependencies.jar -p 8082.

4 Chapter 1. User documentation

INTO-CPS Maestro, Release 2.0.0 Alpha

conn = http.client.HTTPConnection('localhost:' + str(port))

4b.2 Create a Session

It is necessary to create a session before conducting a co-simulation.

Example response: {'sessionId': '5f439916-23f8-4609-9ff8-5f81408b9046'}.

Python code:

print("Create session")
conn.request('GET', '/createSession')
response = conn.getresponse()
if not response.status == 200:

print("Could not create session")
sys.exit()

status = json.loads(response.read().decode())
print ("Session '%s', data=%s'" % (status["sessionId"], status))

4b.3 Initialize the co-simulation

Send the scenario.json to the server.

Example response: [{"status":"Initialized","sessionId":"5f439916-23f8-4609-9ff8-5f81408b9046",
"lastExecTime":0,"avaliableLogLevels":{"{msd2}.msd2i":[],"{msd1}.msd1i":[]}}].

Python code:

response = post(conn, '/initialize/' + status["sessionId"], "scenario.json")
if not response.status == 200:

print("Could not initialize")
sys.exit()

print ("Initialize response code '%d, data=%s'" % (response.status, response.read().
→˓decode()))

4b.4 Optional: Connect Web Socket

At this stage, one can connect a web socket if so desired. This is currently not part of the scenario. See the API for
more information.

4b.5 Run the Co-Simulation

The information passed as CLI arguments are now part of a simulate.json file:

1 {
2 "startTime": 0,
3 "endTime": 10
4 }

1.1. Getting Started 5

INTO-CPS Maestro, Release 2.0.0 Alpha

Send the simulate.json file to the server.

Example response: {"status":"Finished","sessionId":"5f439916-23f8-4609-9ff8-5f81408b9046",
"lastExecTime":1752}'.

Python code:

def post(c, location, data_path):
headers = {'Content-type': 'application/json'}
foo = json.load(open(data_path))
json_data = json.dumps(foo)
c.request('POST', location, json_data, headers)
res = c.getresponse()
return res

response = post(conn, '/simulate/' + status["sessionId"], "simulate.json")
if not response.status == 200:

print("Could not simulate")
sys.exit()

print ("Simulate response code '%d, data=%s'" % (response.status, response.read().
→˓decode()))

4b.6 Get the results

Retrieve the csv results and store in result.csv

Example response: CSV content (too large to show).

Python code:

conn.request('GET', '/result/' + status["sessionId"] + "/plain")
response = conn.getresponse()
if not response.status == 200:

print("Could not receive results")
sys.exit()

result_csv_path = "result.csv"
csv = response.read().decode()
print ("Result response code '%d" % (response.status))
f = open(result_csv_path, "w")
f.write(csv)
f.close()

4b.7 Destroy the session

Destroy the session and allow Maestro to clean up session data

Example reponse: ‘Session 5f439916-23f8-4609-9ff8-5f81408b9046 destroyed’

Python code:

conn.request('GET', '/destroy/' + status['sessionId'])
response = conn.getresponse()
if not response.status == 200:

print("Could not destroy session")
sys.exit()

(continues on next page)

6 Chapter 1. User documentation

INTO-CPS Maestro, Release 2.0.0 Alpha

(continued from previous page)

print ("Destroy response code '%d, data='%s'" % (response.status, response.read().
→˓decode()))

1.2 API

Maestro has multiple interfaces:

• Command Line Interface (CLI) Command Line Interface.

• Master Web Interface for Co-Simulation described in Master Web Interface for Co-Simulation.

• Slave Web Interface for Co-Simulation Slave Web Interface for Co-Simulation.

1.2.1 Command Line Interface

The command line interface is avaialble via the maestro jar file:

usage: coe
-c,--configuration <path> Path to configuration file
-e,--endtime <time> The start time of the simulation
-h,--help Show this description
-l,--load <path> Attempt to load a single FMU
-o,--oneshot Run a single simulation and shutdown
-p,--port <port> The port where the REST interface will be

served
-r,--result <path> Path where the csv data should be writting to
-s,--starttime <time> The start time of the simulation
-v Verbose
-version,--version Version
-x,--extract <type> Extract values: 'script'

1.2.2 Master Web Interface for Co-Simulation

The master web interface is described in the following document: :protocol

It is also suggested to use the INTO-CPS Application to generate the required configuration and then examine the
JSON to see the structure based on a given example.

1.2.3 Slave Web Interface for Co-Simulation

Efforts are being carried out to add the documentation of the slave web interface. Please ask if required.

1.2. API 7

INTO-CPS Maestro, Release 2.0.0 Alpha

8 Chapter 1. User documentation

CHAPTER 2

Developer Documentation

Maestro2 is currently under development in the 2.0.0-alpha branch.

9

INTO-CPS Maestro, Release 2.0.0 Alpha

10 Chapter 2. Developer Documentation

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

11

	User documentation
	Getting Started
	API

	Developer Documentation
	Indices and tables

